旅游科学 ›› 2024, Vol. 38 ›› Issue (10): 100-127.

• • 上一篇    

房东自述内容对民宿销量的影响研究——基于社会认知理论视角

陈东芝1, 邱汉琴2,*   

  1. 1.天津财经大学商学院,天津 300221;
    2.浙大城市学院国际文化和旅游学院,浙江杭州 310015
  • 收稿日期:2023-01-07 修回日期:2023-11-19 出版日期:2024-10-30 发布日期:2024-12-04
  • 通讯作者: 邱汉琴*(1962—),女,浙大城市学院国际文化和旅游学院教授,博导,研究方向为旅游与服务业发展政策研究、消费者行为,E-mail:qiuhq@zucc.edu.cn。
  • 作者简介:陈东芝(1986—),女,天津财经大学商学院副教授,研究方向为共享民宿和智慧旅游,E-mail:chendongzhi@tjufe.edu.cn。
  • 基金资助:
    国家自然科学基金项目“线上民宿房东亲和力对房客预订行为的影响机制研究——基于多源异构数据视角”(72202154); 中国博士后科学基金项目“民宿AI数字人主播与真人主播亲和力对顾客预定行为的作用机制与优化研究”(2024M753541)

A Study on the Impact of the Content of the Host Self-Description on Sales on Peer-to-Peer Platforms—Based on the Perspective of Social Cognitive Theory

CHEN Dongzhi1, QIU Hanqin2,*   

  1. 1. Business School, Tianjin University of Finance and Economics, Tianjin 300221, China;
    2. International School of Cultural Tourism, Hangzhou City University, Hangzhou 310015, China
  • Received:2023-01-07 Revised:2023-11-19 Online:2024-10-30 Published:2024-12-04

摘要: 基于社会认知理论,文章构建了一个可调节的影响机制模型,探讨了房东自述内容中的温暖度和能力值对民宿销量的影响作用和边界条件。文章将房东的自述内容划分为温暖度和能力值两个维度4个类型,即 “有温暖度-无能力值”“有温暖度-有能力值”“无温暖度-无能力值”和“无温暖度-有能力值”,并构建了房客对房东自述内容认知的评价框架;之后,基于从爱彼迎(Airbnb)平台上获取的全球21个城市中的339600条房源数据,本研究构建了房东自述内容词库,采用层次回归分析方法来验证4种类型的房东自述内容对民宿销量影响的机制模型,并探讨了可能存在的边界条件。研究发现:第一,如果房东在自述中展现了温暖度,会增强民宿在线销量,但展现能力值则不会;第二,民宿的评分越高,房东自述中的能力值和温暖度对销量的影响则越强;第三,随着经营年份的延长,如果房东在自述中展现了温暖度和/或能力值,其所经营的民宿销量的增幅会高于经营年份更短的房东;第四,在民宿为整体出租的情况下,如果房东在自述中提及自身的能力值和温暖度,对民宿的销量影响并不显著,若未提及两者,反而会促进销量;但在民宿为共享房间的情况下,房东在自述中只展现自身的温暖度会提高销量,只展现能力值则会降低销量。文章将社会认知理论应用到线上民宿短租平台中,从宏观的视角对房东自述文本内容及其对民宿销量的影响进行了整体性探讨,有利于指导房东根据民宿和自身情况的变化适时调整自述,从而提高在线销量。

关键词: 房东自述, 在线销量, 民宿, 文本挖掘, 社会认知理论

Abstract: Based on the social cognitive theory, this paper constructed a moderated influence mechanism model, and explored the influence and boundary conditions of warmth and competence values in the content of the host self-descriptions on the sales on peer-to-peer platforms. This paper divided the content of the host self-descriptions into four types, namely "warmth-incompetence", "warmth-competence", "warmth-incompetence", "no warmth-incompetence" and "no warmth-competence" and constructed an evaluation framework for guests' cognition of the content of the host self-descriptions. Then, based on 339,600 listings in 21 cities around the world obtained from the Airbnb platform, this study constructed a word classification model of the content of the host self-descriptions, used hierarchical regression analysis to verify the mechanism model of the impact of four types of the content of the host self-descriptions on homestay sales, and discussed the possible boundary conditions. The results show that: firstly, if a host shows warmth in the self-description, it will increase the online sales, but if a host shows his/her competence in the description will not. Secondly, the higher the rating of the homestays, the stronger the impact of the host's warmth and competence reflected in the self-description on sales. Thirdly, as the number of years of operation increases, if a host demonstrates warmth and/or competence in his/her self-descriptions, the increase in sales will be higher than that of a host with a shorter operating year. Fourth, if the homestay is rented out as a whole, if the host demonstrates his/her warmth and competence in the self-description, the impact on the sales will not be significant, but if the host demonstrates his/her warmth and competence, it will promote sales. Furthermore, if the homestay is rented out as a shared room, the host will increase homstay sales by only showing his/her warmth in the self-descriptions and will reduce sales if the host only shows his/her competence. This paper applies the social cognitive theory to the peer-to-peer platforms and explores the content of the host self-descriptions and its impact on the sales from a macro perspective, which is conducive to guiding the hosts to adjust their self-descriptions in a timely manner according to the changes of the homestays and their own situation, so as to increase online sales.

Key words: host self-description, online sales, homestay, text mining, social cognitive theory

中图分类号: 

  • F719.2

版权所有 © 2018 《旅游科学》编辑部 | 沪ICP备14045560号-1

地址:上海市桂林路100号上海师范大学12号楼211室 | 邮编:200234 | 电话:021-64322594 | Email:lykx@shnu.edu.cn

本系统由北京玛格泰克科技发有限公司设计开发