旅游科学 ›› 2024, Vol. 38 ›› Issue (8): 60-87.

• 旅游心理与行为 • 上一篇    下一篇

基于方面情感三元组抽取的游客评论大数据细粒度情感分析

肖璐1,2,3, 李桥兴1,3,*, 陈怡梦2, 沈加升1, 张茜2, 杨勇1   

  1. 1.贵州大学管理学院, 贵州贵阳 550025;
    2.贵州商学院旅游管理学院, 贵州贵阳 550014;
    3.贵州大学数字化转型与治理协同创新实验室, 贵州贵阳 550025
  • 收稿日期:2023-10-24 修回日期:2024-07-13 出版日期:2024-08-30 发布日期:2024-09-18
  • 通讯作者: 李桥兴*(1973—),男,博士后,贵州大学管理学院教授,博导,研究方向为管理科学与系统工程、产业经济学与大数据分析,E-mail:qxli@gzu.edu.cn。
  • 作者简介:肖璐(1986—),女,贵州大学管理学院博士生,贵州商学院旅游管理学院讲师,研究方向为管理科学与大数据分析、旅游经济与旅游消费者行为,E-mail:gs.lxiao21@gzu.edu.cn。陈怡梦(1981—),贵州商学院旅游管理学院副教授,研究方向为旅游心理与消费者行为。沈加升(1983—),男,贵州大学管理学院硕士生,研究方向为软件工程研发与数据分析。张茜(1988—),女,博士,贵州商学院旅游管理学院讲师,研究方向为大数据隐私保护和旅游消费者行为。杨勇(1980—),男,贵州大学管理学院讲师、博士生,研究方向为自然语言处理与大数据分析。
  • 基金资助:
    国家自然科学基金项目“我国南方喀斯特地区大健康产业的布局机制研究”(71663011); 贵州大学研究基地及智库重点专项课题“新型城镇化视角下贵州智慧养老机构的布局策略研究”(GDZX2021030)

Fine-Grained Sentiment Analysis of Tourists' Reviews Big Data: Based on Aspect Sentiment Triplet Extraction

XIAO Lu1,2,3, LI Qiaoxing1,3,*, CHEN Yimeng2, SHEN Jiasheng1, ZHANG Qian2, YANG Yong1   

  1. 1. School of Management, Guizhou University, Guiyang 550025, China;
    2. School of Tourism Management, Guizhou University of Commerce, Guiyang 550014, China;
    3. Collaborative Innovation Laboratory of Digital Transformation and Governance, Guizhou University, Guiyang 550025, China
  • Received:2023-10-24 Revised:2024-07-13 Online:2024-08-30 Published:2024-09-18

摘要: 目前游客细粒度情感分析的研究多集中于基于主题聚类下的频次统计等的大致分析,缺乏更精准地从每一条评论中抽取所有属性情感特征的细致定量刻画。因此,文章基于国内四大知名旅游电商平台上有关贵州省数百家A级旅游景区的游客评论大数据,建构较大规模的旅游评论方面级情感分析(ABSA)中文标注数据集;采用基于BERT的LCF-AEPC方面情感三元组抽取联合模型,在近8万条主观评论文本集上端到端地实现17万余个方面情感三元组的预测输出;并基于此输出结果进行可视化量化分析,探究游客在景区不同方面以及在不同级别和不同类型景区上的情感特征差异及其原因,构建了包含四类要素的游客情感感知影响因素模型。文章通过人工智能领域的深度学习技术实现ABSA多任务可快速有效地捕捉游客对景区各方面的偏好、需求和意见等信息,将成为旅游领域细粒度情感研究的有益尝试和最新应用。

关键词: 旅游大数据, 方面级情感分析, 深度学习, 三元组抽取, 情感特征

Abstract: The current research on fine-grained sentiment analysis of tourists is mostly focused on approximate analysis based on topic clustering and frequency statistics and so on, lacking the meticulous quantitative portrayal of all aspect sentiment features extracted from each review more precisely. In this article, we constructed a large-scale ABSA Chinese annotated dataset of tourism reviews based on the big data of tourists' real reviews of hundreds of national A-level scenic spots in Guizhou Province on four well-known domestic tourism e-commerce platforms. using BERT-based LCF-AEPC aspects sentiment triplet extraction joint model, the prediction output of more than 170,000 aspect sentiment triplets were realized end-to-end on a dataset of nearly 80,000 subjective review texts. Based on the output results, a visual and quantitative analysis was conducted to explore the differences in tourists' sentiment characteristic regarding different aspects of attractions, as well as across different levels and types of attractions. Then the reasons of the differences were tried to be explained and a framework of four-element tourist sentiment impact factors was constructed. This article utilizes the deep learning techniques in the field of artificial intelligence to achieve ABSA multi-task, thereby quickly and effectively capturing the information of tourists' preferences, needs, and opinions on various aspects of tourist attractions. This will be a beneficial attempt and the latest application of fine-grained sentiment research in the field of tourism.

Key words: tourism big data, aspect sentiment analysis, deep learning, triplet extraction, sentiment features

中图分类号: 

  • F592.7

版权所有 © 2018 《旅游科学》编辑部 | 沪ICP备14045560号-1

地址:上海市桂林路100号上海师范大学12号楼211室 | 邮编:200234 | 电话:021-64322594 | Email:lykx@shnu.edu.cn

本系统由北京玛格泰克科技发有限公司设计开发