旅游科学 ›› 2025, Vol. 39 ›› Issue (1): 1-23.
• • 下一篇
刘俊1,2,*, 余云云1, 胡思可2, 李潇涵2, 何默其2
收稿日期:
2023-06-29
修回日期:
2025-01-09
出版日期:
2025-01-30
发布日期:
2025-04-09
通讯作者:
刘俊*(1979—),男,博士,四川大学旅游学院教授,博导,研究方向为旅游大数据与可持续旅游,E-mail:liujun_igsnrr@126.com。
作者简介:
余云云(1998—),女,四川大学灾后重建与管理学院博士生,研究方向为灾后人文重建与旅游大数据。胡思可(1999—),女,四川大学旅游学院硕士生。李潇涵(1999—),女,四川大学旅游学院硕士生。何默其(2002—),男,四川大学旅游学院本科生。
基金资助:
LIU Jun1,2,*, YU Yunyun1, HU Sike2, LI Xiaohan2, HE Moqi2
Received:
2023-06-29
Revised:
2025-01-09
Online:
2025-01-30
Published:
2025-04-09
摘要: 系统地回顾大数据在旅游研究中的应用,对于理解旅游研究范式的转型,响应新涌现的科学问题和实践应用问题具有重要意义。对Web of Science、Archive和中国知网3个数据库中的2477篇旅游大数据文献进行了综述。研究发现:(1) 从2010年开始,旅游大数据研究文献数量逐年增长。中国研究者发表了838篇旅游大数据研究论文,占文献总量的33.83%。(2) 接近50.00%的论文以会议和学位论文的形式发表,超过70.00%的文献发表在非旅游类期刊。(3) 62.65%的论文利用了TripAdvisor、携程旅行网、马蜂窝等的UGC数据。(4) 预测旅游需求、旅游推荐、旅游消费行为、游客流动模式、旅游目的地形象、游客满意度、景观评价和方法创新是当前研究聚焦的八大场景。(5) 目前旅游研究领域对大数据应用方法的创新贡献不足,主要通过迁移数据科学与信息科学等已经发展较为成熟的方法,结合旅游情景和数据开展研究。
中图分类号:
刘俊, 余云云, 胡思可, 李潇涵, 何默其. 大数据在旅游研究中的应用:研究回顾与未来展望[J]. 旅游科学, 2025, 39(1): 1-23.
LIU Jun, YU Yunyun, HU Sike, LI Xiaohan, HE Moqi. Big Data in Tourism Research:Literature Review and Future Prospects[J]. TOURISM SCIENCE, 2025, 39(1): 1-23.
[1] 蔡卫民,曾铭,李冬杰,2020.中国会展城市旅游微博时空分布特征及其影响因素[J].经济地理(8):185-193. [2] 曹小曙,刘丹,2018.大数据视角下中国城市旅游交通满意度的空间分异特征及影响因素[J].热带地理(6):771-780. [3] 昌杰,卢松,2022.黄山市民宿时空演化与影响因素研究[J].旅游科学(3):147-159. [4] 陈健柯,陈平华,2018.基于兴趣热点图的旅游路线推荐算法[J].计算机工程与设计(9):2941-2946. [5] 陈曦,李啸虎,关靖云,2019.基于微博签到数据的天山天池景区游客流时空特征研究[J].地域研究与开发(4):85-91. [6] 程翠琼,徐健,2017.面向网络游记时间特征的情感分析模型[J].数据分析与知识发现(2):87-95. [7] 程艳,叶子铭,王明文,2019.融合卷积神经网络与层次化注意力网络的中文文本情感倾向性分析[J].中文信息学报(1):133-142. [8] 丛丽,何继红,2020.野生动物旅游景区游客情感特征研究——以长隆野生动物世界为例[J].旅游学刊(2):53-64. [9] 丛丽,吴必虎,2014.基于网络文本分析的野生动物旅游体验研究——以成都大熊猫繁育研究基地为例[J].北京大学学报(自然科学版)(6):1087-1094. [10] 戴滢,2018.基于UGC图片大数据的入境游客目的地在线形象感知差异研究[D].北京:北京第二外国语学院. [11] 邓宁,刘耀芳,牛宇,等,2019.不同来源地旅游者对北京目的地形象感知差异——基于深度学习的Flickr图片分析[J].资源科学(3):14. [12] 丁杰,沈新,2023.旅游型乡村空间活力的分布特征及其影响机制:基于多源数据的宏村实证分析[J].旅游科学(5):61-79. [13] 丁治凡,严靖恒,严军,2020.基于多源数据的南京玄武湖公园使用情况评价与分析[J].现代城市研究(8):35-43. [14] 方程,吴晔,2021.近20年来我国街景评价研究的热点与演进[J].现代城市研究(12):61-69. [15] 伏学习,2022.基于网络照片的景观视觉质量评价及与景观格局的耦合关系研究[D].保定:河北农业大学. [16] 高宝俊,孙含琳,王寒凝,2016.在线评论对酒店订满率的影响研究[J].旅游学刊(4):109-117. [17] 何雪琴,杨文忠,吾守尔·斯拉木,等,2019.融合句法规则和CNN的旅游评论情感分析[J].计算机工程与设计(11):3306-3312. [18] 黄英,周智,黄娟,2014.大数据时代乡村旅游发展的时空分异特征[J].浙江农业学报(6):1709-1714. [19] 戢晓峰,戈艺澄,陈方,2019.基于公路交通流大数据的节假日旅游流时空分异特征——以云南省2017年7个节假日为例[J].旅游学刊(6):37-47. [20] 江帆,林珊珊,应天煜,等,2022.中国旅游大数据研究:二十年回顾与展望[J].旅游导刊(4):68-104. [21] 蒋依依,高洁,郭佳明,等,2024.地理大数据在旅游领域的创新应用及学科影响和研究展望[J].地球信息科学学报(2):242-258. [22] 蒋仲安,王明,陈雅,2017.基于地理坐标和轨迹数据的路径推荐方法[J].通信学报(5):165-171. [23] 蒋宗礼,金益斌,2016.结合点评情感分析的推荐算法研究[J].计算机应用研究(5):1312-1314;1326. [24] 李君轶,朱函杰,付利利,2020.基于大数据的西安市国内游客情感体验时空变化研究[J].干旱区地理(4):1067-1076. [25] 林振宇,解吉波,杨腾飞,等,2021.旅游多主题情感词典的构建方法[J].地理与地理信息科学(4):22-27;98. [26] 刘俊,王胜宏,金朦朦,等,2019.基于微博大数据的2010—2018年中国桃花观赏日期时空格局研究[J].地理科学(9):1446-1454. [27] 刘梦圆,2017.基于网络文本分析的南京市旅游地形象感知研究[D].南京:南京师范大学. [28] 刘前梅,2021.基于Flickr地理标记照片的西南地区入境游客时空行为研究[D].贵州:贵州大学. [29] 刘向前,梁留科,元媛,等,2018.大数据时代美食夜市游憩者满意度双视角研究[J].美食研究(2):24-31. [30] 刘亚萍,于杰,王富强,2019.中国赴东盟旅游流重心移动轨迹及旅游市场态分析[J].旅游科学(4):85-95. [31] 刘艳平,保继刚,黄应淮,等,2019.基于GPS数据的自驾车游客时空行为研究——以西藏为例[J].世界地理研究(1):149-160. [32] 刘逸,陈欣诺,保继刚,等,2019.游客对自然和人文旅游资源的情感画像差异研究[J].旅游学刊(10):21-31. [33] 卢奇,陈文亮,2018.大规模中文实体情感知识的自动获取[J].中文信息学报(8):32-41. [34] 罗森林,毛焱颖,潘丽敏,等,2018.扩展语义相似情感词的文本情感分类方法[J].北京理工大学学报(11):1156-1162;1176. [35] 孟祥武,李瑞昌,张玉洁,等,2018.基于用户轨迹数据的移动推荐系统研究[J].软件学报(10):3111-3133. [36] 史达,王志敏,2019.绿色饭店用户体验——基于在线评论的深度学习研究[J].旅游科学(6):62-76. [37] 石栋奇,2023.来华美国游客中国旅游目的地形象研究——基于TripAdvisor和Facebook社交媒体大数据分析[D].西安:西安外国语大学. [38] 时萍萍,胡姚刚,孟继东,2022.基于互联网旅游数据的游客量预测模型研究现状与展望[J].资源开发与市场(8):921-929. [39] 王承云,戴添乐,蒋世敏,等,2022.基于网络大数据的上海红色旅游形象感知与情感评价研究[J].旅游科学(2):138-150. [40] 王坤,雷振仙,2023.山地骑行旅游的时空特征及形成机理——以贵州省为例[J].旅游科学(2):133-154. [41] 王丽鲲,2017.基于社交媒体地理数据挖掘的游客时空行为分析[D].上海:上海师范大学. [42] 王玲,代前进,吴晓隽,2018.基于预警平台大数据的事件旅游客流时空分布研究[J].数据分析与知识发现(8):31-40. [43] 王少兵,吴升,2018.采用在线评论的景点个性化推荐[J].华侨大学学报(自然科学版)(3):467-472. [44] 王潇慧,2018.基于Web的旅游产品推荐系统设计与研究[J].现代电子技术(10):97-99;104. [45] 文君,2021.基于大数据分析的高端民宿消费行为研究[D].郑州:郑州大学. [46] 鄢慧丽,张小浩,熊浩,2023.一星即差评?评论效价对酒店评论有用性的影响:一项混合方法研究[J].旅游科学(2):77-99. [47] 闫闪闪,靳诚,2019.洛阳城区旅游流空间网络结构特征[J].地理科学(10):1602-1611. [48] 严仲培,陆文星,束柬,等,2019.面向旅游在线评论情感词典构建方法[J].计算机应用研究(6):1660-1664. [49] 杨雯丽,2022.基于语境感知的旅游推荐研究及实现[D].上海:上海师范大学. [50] 姚梦汝,陈焱明,周桢津,等,2018.中国-东盟旅游流网络结构特征与重心轨迹演变[J].经济地理(7):181-189. [51] 曾忠禄,王兴,2020.大数据在旅游研究中的运用——国际文献研究[J].情报杂志(10):150;165-168. [52] 张郴,黄震方,张捷,等, 2017.基于机器学习的南京市旅游地个性及其文化景观表征[J].地理学报(10):1886-1903. [53] 张家瑜,2022.基于街景数据的城市街道景观视觉评价体系研究[D].福州:福建农林大学. [54] 张丽娜,李仁杰,张军海,等,2020.位置照片表征的景区游客拍照行为时空模式[J].旅游科学(1):88-103. [55] 张舜尧,常亮,古天龙,等,2019.基于轨迹挖掘模型的旅游景点推荐[J].模式识别与人工智能(5):463-471. [56] 张鲜鲜,李婧晗,左颖,等,2018.基于数字足迹的游客时空行为特征分析——以南京市为例[J].经济地理(12):226-233. [57] 张珍珍,李君轶,2014.旅游形象研究中问卷调查和网络文本数据的对比——以西安旅游形象感知研究为例[J].旅游科学(6):73-81. [58] 郑权莉,宋文雯,2015.景观评价中的统计分析方法探究[J].设计(7):48-51. [59] ALAEI A R,BECKEN S,STANTIC B,2017.Sentiment analysis in tourism:capitalizing on big data[J].Journal of travel research,58(2):175-191. [60] ALONSO M B,2021.Data Augmentation Using Many-to-many RNNs for Session-aware Recommender Systems[C/OL]//Proceedings of the ACM WSDM Workshop on Web Tourism(WSDM Webtour 2021).https://doi.org/10.48550/arXiv.2108.09858. [61] AN H, KIM K,MOON N,2019.Design of Establishment System of Satisfaction Index for Tourist Sites According to the Weather Using Deep Neural Network[C]//PARK J J,PARK D,JEONG Y,et al.Advances in Computer Science and Ubiquitous Computing.Springer Singapore:310-315. [62] BADRINARAYANAN V,KENDALL A,CIPOLLA R,2017.Segnet:a deep convolutional encoder-decoder architecture for image segmentation[J].IEEE transactions on pattern analysis and machine intelligence,39(12):2481-2495. [63] BAGHERZADEH S,SHOKOUHYAR S,JAHANI H,et al.,2021.A generalizable sentiment analysis method for creating a hotel dictionary:using big data on TripAdvisor hotel reviews[J].Journal of hospitality and tourism technology,12(2):210-238. [64] BI J W,HAN T Y,YAO Y,2023.Fine-grained tourism demand forecasting:a decomposition ensemble deep learning model[J].Tourism economics,29(7):1736-1763. [65] BIGNÉ E,OLTRA E,ANDREU L,2019.Harnessing stakeholder input on Twitter:a case study of short breaks in Spanish tourist cities[J].Tourism management,71:490-503. [66] BRAITHWAITE I,CALLENDER T,BULLOCK M,et al.,2020.Automated and partly automated contact tracing:a systematic review to inform the control of COVID-19[J].The lancet digital health,2(11):e607-e621. [67] BUI V,ALAEI A R,VU H Q,et al.,2021.Revisiting tourism destination image:a holistic measurement framework using big data[J].Journal of travel research,61(6):1287-1307. [68] CHANUKI I S,TOBIAS P,HELEN S M,2017.Using deep learning to quantify the beauty of outdoor places[J].Royal society open science,4(7):1-13. [69] CHEN M,2022a.Tourism Demand Analysis Algorithm Based on Data Forecast Model Analysis[C]//JANSEN B J,LIANG H,YE J.International Conference on Cognitive based Information Processing and Applications(CIPA 2021).Springer Singapore,2:28-37. [70] CHEN X,2022b.Emotional calculation method of rural tourist based on improved SPCA-LSTM algorithm[J/OL].Journal of sensors:3365498.https://doi.org/10.1155/2022/3365498. [71] CHU M,CHEN Y,YANG L,et al.,2022.Language interpretation in travel guidance platform:text mining and sentiment analysis of TripAdvisor reviews[J/OL].Frontiers in psychology,13:1029945.https://doi.org/10.3389/fpsyg.2022.1029945. [72] CORD A F,ROEßIGER F,SCHWARZ N,2015.Geocaching data as an indicator for recreational ecosystem services in urban areas:exploring spatial gradients,preferences and motivations[J].Landscape and urban planning,144:151-162. [73] CUESTA-VALIÑO P,KAZAKOV S,GUTIÉRREZ-RODRÍGUEZ P,et al.,2023.The effects of the aesthetics and composition of hotels' digital photo images on online booking decisions[J].Humanities and social sciences communications,10(1):1-11. [74] DENG N,LI X,2018.Feeling a destination through the "right" photos:a machine learning model for DMOs' photo selection[J].Tourism management,65:267-278. [75] DENG N, LIU J, DAI Y, et al.,2019.Different cultures,different photos:a comparison of Shanghai's pictorial destination image between East and West[J].Tourism management perspectives,30:182-192. [76] ESSIEN A,CHUKWUKELU G,2022.Deep learning in hospitality and tourism:a research framework agenda for future research[J].International journal of contemporary hospitality management,34(12):4480-4515. [77] FAN W,LI Y,UPRETI B R,et al.,2022.Big data for big insights:quantifying the adverse effect of air pollution on the tourism industry in China[J].Journal of travel research,61(8):1947-1966. [78] FU M,PAN L,2022.Sentiment analysis of tourist scenic spots internet comments based on LSTM[J/OL].Mathematical problems in engineering:5944954.https://doi.org/10.1155/2022/5944954. [79] GANDOMI A,HAIDER M,2015.Beyond the hype:big data concepts,methods,and analytics[J].International journal of information management,35(2):137-144. [80] GIGLIO S,PANTANO E,BILOTTA E,et al.,2020.Branding luxury hotels:evidence from the analysis of consumers' "big" visual data on TripAdvisor[J].Journal of business research,119:495-501. [81] GLAVELI N,MANOLITZAS P,PALAMAS S,et al.,2022.Developing effective strategic decision-making in the areas of hotel quality management and customer satisfaction from online ratings[J].Current issues in tourism,26(6):1003-1021. [82] GUAN C H,SONG J,KEITH M,et al.,2021.Seasonal variations of park visitor volume and park service area in Tokyo:a mixed-method approach combining big data and field observations[J/OL].Urban forestry & urban greening,58:126973.https://doi.org/10.1016/j.ufug.2020.126973. [83] GÜNTHER W A,MEHRIZI M H R,HUYSMAN M,et al.,2017.Debating big data:a literature review on realizing value from big data[J].The journal of strategic information systems,26(3):191-209. [84] HIMANEN L,GEURTS A,FOSTER A S,et al.,2019.Data-driven materials science:status,challenges,and perspectives[J/OL].Advanced science,6(21):1900808.https://doi.org/10.1002/advs.201900808. [85] HÖPKEN W,EBERLE T,FUCHS M,et al.,2020.Improving tourist arrival prediction:a big data and artificial neural network approach[J].Journal of travel research,60(5):998-1017. [86] HOSSAIN I,PALASH M A H,SEJUTY A T,et al.,2022.A survey of recommender system techniques and the ecommerce domain[J/OL].Arxiv preprint arxiv:2208.07399.https://doi.org/10.48550/arXiv.2208.07399. [87] HU F,LI H,LIU Y,et al.,2020.Optimizing service offerings using asymmetric impact-sentiment-performance analysis[J/OL].International journal of hospitality management,89:102557.https://doi.org/10.1016/j.ijhm.2020.102557. [88] HU F,TEICHERT T,LIU Y,et al.,2019.Evolving customer expectations of hospitality services: differences in attribute effects on satisfaction and re-patronage[J].Tourism management,74:345-357. [89] JESENKO B,SCHLÖGL C,2021.The effect of web of science subject categories on clustering:the case of data-driven methods in business and economic sciences[J].Scientometrics,126(8):6785-6801. [90] JIA S,2020.Motivation and satisfaction of Chinese and U.S.tourists in restaurants:a cross-cultural text mining of online reviews[J/OL].Tourism management,78:104071.https://doi.org/10.1016/j.tourman.2019.104071. [91] KAMEOKA T,UCHIDA A,SASAKI Y,et al.,2022.Assessing streetscape greenery with deep neural network using google street view[J].Breeding science,72(1):107-114. [92] KHAN F M,KHAN S A,SHAMIM K,et al.,2023.Analysing customers' reviews and ratings for online food deliveries:a text mining approach[J].International journal of consumer studies,47(3): 953-976. [93] KIM T,JO H,YHEE Y,et al.,2022.Robots,artificial intelligence,and service automation(RAISA) in hospitality:sentiment analysis of YouTube streaming data[J].Electronic markets,32(1):259-275. [94] KIRILENKO A P,STEPCHENKOVA S O,HERNANDEZ J M,2019.Comparative clustering of destination attractions for different origin markets with network and spatial analyses of online reviews[J].Tourism management,72:400-410. [95] LAO X,DENG X,GU H,et al.,2022.Comparing intercity mobility patterns among different holidays in China:a big data analysis[J].Applied spatial analysis and policy,15(4):993-1020. [96] LEE M,CAI Y,DEFRANCO A,et al.,2020.Exploring influential factors affecting guest satisfaction: big data and business analytics in consumer-generated reviews[J].Journal of hospitality and tourism technology,11(1):137-153. [97] LEE M,LEE S,KOH Y,2019.Multisensory experience for enhancing hotel guest experience[J].International journal of contemporary hospitality management,31(11):4313-4337. [98] LI F,LI T,2022b.Tourism consumer demand forecasting under the background of big data[J/OL].Mathematical problems in engineering:4335718.https://doi.org/10.1155/2022/4335718. [99] LI H,HU M,LI G,2020a.Forecasting tourism demand with multisource big data[J/OL].Annals of tourism research,83:102912.https://doi.org/10.1016/j.annals.2020.102912. [100] LI H,WANG Q,ZHANG L,et al.,2022a.Big data in China tourism research:a systematic review of publications from English journals[J].Journal of China tourism research,18(3):453-471. [101] LI H,ZHANG L,HSU C H C,2023b.Research on user-generated photos in tourism and hospitality:a systematic review and way forward[J/OL].Tourism management,96:104714.https://doi.org/10.1016/j.tourman.2022.104714. [102] LI J,XU L,TANG L,et al.,2018.Big data in tourism research:a literature review[J].Tourism management,68:301-323. [103] LI R,LI Y Q,RUAN W Q,et al.,2023a.Sentiment mining of online reviews of peer-to-peer accommodations:customer emotional heterogeneity and its influencing factors[J/OL].Tourism management,96:104704.https://doi.org/10.1016/j.tourman.2022.104704. [104] LI W,ZHU L,SHI Y,et al.,2020b.User reviews:sentiment analysis using lexicon integrated two-channel CNN-LSTM family models[J/OL].Applied soft computing,94:106435.https://doi.org/10.1016/j.asoc.2020.106435. [105] LI X,KANG Y,LI F,2020c.Forecasting with time series imaging[J/OL].Expert systems with applications,160:113680.https://doi.org/10.1016/j.eswa.2020.113680. [106] LI X,ZHANG C,LI W,et al.,2015.Assessing street-level urban greenery using google street view and a modified green view index[J].Urban forestry & urban greening,14(3):675-685. [107] LIANG X,HONG C,ZHOU W,et al.,2022.Air travel demand forecasting based on big data:a struggle against public anxiety[J/OL].Frontiers in psychology,13:1017875.https://doi.org/10.3389/fpsyg.2022.1017875. [108] LIMA T DE O,COLAÇO M,PRADO K H DE J,et al.,2021.A Big Data Experiment to Evaluate the Effectiveness of Traditional Machine Learning Techniques against LSTM Neural Networks in the Hotels Clients Opinion Mining[C/OL]//2021 IEEE International Conference on Big Data(Big Data).Orlando,FL,USA:5199-5208.doi:10.1109/BigData52589.2021.9671939. [109] LIN M S,LIANG Y,XUE J X,et al.,2021.Destination image through social media analytics and survey method[J].International journal of contemporary hospitality management,33(6):2219-2238. [110] LIU J,HU S,MEHRALIYEV F,et al.,2023.Text classification in tourism and hospitality—a deep learning perspective[J].International journal of contemporary hospitality management,35(12):4177-4190. [111] LIU J,YU Y,MEHRALIYEV F,et al.,2022.What affects the online ratings of restaurant consumers:a research perspective on text-mining big data analysis[J].International journal of contemporary hospitality management,34(10):3607-3633. [112] LIU Y,HUANG K,BAO J,et al.,2019.Listen to the voices from home: an analysis of Chinese tourists' sentiments regarding australian destinations[J].Tourism management,71:337-347. [113] LIU Y Y,TSENG F M,TSENG Y H,2018.Big data analytics for forecasting tourism destination arrivals with the applied vector autoregression model[J].Technological forecasting and social change,130:123-134. [114] LU J,2022.Personalized recommendation algorithm of smart tourism based on cross-media big data and neural network[J/OL].Computational intelligence and neuroscience:9566766.https://doi.org/10.1155/2022/9566766. [115] LUO J,HUANG S,WANG R,2021.A fine-grained sentiment analysis of online guest reviews of economy hotels in China[J].Journal of hospitality marketing & management,30(1):71-95. [116] LYU J,KHAN A,BIBI S,et al.,2022.Big data in action:an overview of big data studies in tourism and hospitality literature[J].Journal of hospitality and tourism management,51:346-360. [117] MA J,TU H,2022.Do tourists' perceptions of tourism destination change across seasons?A mixed big data analysis[J].Current issues in tourism,26(12):2006-2026. [118] MARIANI M,BAGGIO R,2021.Big data and analytics in hospitality and tourism:a systematic literature review[J].International journal of contemporary hospitality management,34(1):231-278. [119] MEHRALIYEV F,CHAN I C,KIRILENKO A P,2021.Sentiment analysis in hospitality and tourism:a thematic and methodological review[J].International journal of contemporary hospitality management,34(1):46-77. [120] MEHRALIYEV F,KIRILENKO A P,CHOI Y,2020.From measurement scale to sentiment scale:examining the effect of sensory experiences on online review rating behavior[J/OL].Tourism management,79:104096.https://doi.org/10.1016/j.tourman.2020.104096. [121] MOU N,WANG J,ZHENG Y,et al.,2023.Flowers as attractions in urban parks:evidence from social media data[J/OL].Urban forestry & urban greening,82:127874.https://doi.org/10.1016/j.ufug.2023.127874. [122] OH M M,KIM S S,2020.Dimensionality of ethnic food fine dining experience:an application of semantic network analysis[J/OL].Tourism management perspectives,35:100719.https://doi.org/10.1016/j.tmp.2020.100719. [123] PADMA P,AHN J,2020.Guest satisfaction & dissatisfaction in luxury hotels:an application of big data[J/OL].International journal of hospitality management,84:102318.https://doi.org/10.1016/j.ijhm.2019.102318. [124] PAN B,YANG Y,2016.Forecasting destination weekly hotel occupancy with big data[J].Journal of travel research,56(7):957-970. [125] PARK S,YANG Y,WANG M,2019.Travel distance and hotel service satisfaction:an inverted U-shaped relationship[J].International journal of hospitality management,76:261-270. [126] PEREIRA L N,CERQUEIRA V,2021.Forecasting hotel demand for revenue management using machine learning regression methods[J].Current issues in tourism,25(17):2733-2750. [127] PETROV A,MAKAROV Y,2021.Attention-based Neural Re-ranking Approach for Next City in Trip Recommendations[C/OL]//ACM WSDM WebTour 2021 Workshop on Web Tourism.https://doi.org/10.48550/arXiv.2103.12475. [128] PHILLIPS P,ZIGAN K,SILVA M S,et al.,2015.The interactive effects of online reviews on the determinants of Swiss hotel performance:a neural network analysis[J].Tourism management,50:130-141. [129] PICKERING C,BYRNE J,2013.The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers[J].Higher education research and development,33(3):534-548. [130] PLIAKOS K,KOTROPOULOS C,2014.Simultaneous Image Clustering,Classification and Annotation for Tourism Recommendation[C]//LIKAS A,BLEKAS K,KALLES D.Artificial Intelligence:Methods and Applications(SETN 2014).Springer,Cham:630-640. [131] RADOJEVIC T,STANISIC N,STANIC N,2015.Solo travellers assign higher ratings than families:examining customer satisfaction by demographic group[J].Tourism management perspectives,16:247-258. [132] SALMASI L,CELIDONI M,PROCIDANO I,2012.Length of stay:price and income semi-elasticities at different destinations in Italy[J].International journal of tourism research,14(6):515-530. [133] SÁNCHEZ-MEDINA A J,C-SÁNCHEZ E,2020.Using machine learning and big data for efficient forecasting of hotel booking cancellations[J/OL].International journal of hospitality management,89:102546.https://doi.org/10.1016/j.ijhm.2020.102546. [134] SASAKI I,ARIKAWA M,LU M,et al.,2022.Thematic Geo-density Heatmapping for Walking Tourism Analytics Using Semi-ready GPS Trajectories[C]//2022 IEEE International Conference on Big Data (Big Data).Osaka,Japan:IEEE:4944-4951. [135] SCHUCKERT M,LIU X,LAW R,2015.A segmentation of online reviews by language groups:how english and non-english speakers rate hotels differently[J].International journal of hospitality management,48:143-149. [136] SERRANO L,ARIZA-MONTES A,NADER M,et al.,2021.Exploring preferences and sustainable attitudes of Airbnb green users in the review comments and ratings:a text mining approach[J].Journal of sustainable tourism,29(7):1134-1152. [137] SHAO Y,YIN Y,XUE Z,et al.,2023.Assessing and comparing the visual comfort of streets across four Chinese megacities using AI-based image analysis and the perceptive evaluation method[J].Land,12(4):834. [138] SHIN S H,YANG S B,NAM K,et al.,2016.Conceptual foundations of a landmark personality scale based on a destination personality scale:text mining of online reviews[J].Information systems frontiers,19(4):743-752. [139] SOHRABI B,VANANI I R,NASIRI N,et al.,2020.A predictive model of tourist destinations based on tourists' comments and interests using text analytics[J/OL].Tourism management perspectives,35:100710.https://doi.org/10.1016/j.tmp.2020.100710. [140] SÖRENSSON A,VON FRIEDRICHS Y,2013.An importance-performance analysis of sustainable tourism:a comparison between international and national tourists[J].Journal of destination marketing & management,2(1):14-21. [141] SREELA S,IDICULA S,2018.Action recognition in still images using residual neural network features[J].Procedia computer science,143:563-569. [142] STEPCHENKOVA S K,KIM H,KIRILENKO A,2015.Cultural differences in pictorial destination images:Russia through the camera lenses of American and Korean tourists[J].Journal of travel research,54(6):1219-1223. [143] SUN S,WEI Y,TSUI K L,et al.,2019.Forecasting tourist arrivals with machine learning and internet search index[J].Tourism management,70:1-10. [144] TANG J,2018.Evaluation of the forecast models of Chinese tourists to Thailand based on search engine attention: a case study of Baidu[J].Wireless personal communications,102(4):3825-3833. [145] TANG L,ZHANG C,LI T,et al.,2020.A novel BEMD-based method for forecasting tourist volume with search engine data[J].Tourism economics,27(5):1015-1038. [146] TENERELLI P,PÜFFEL C,LUQUE S,2017.Spatial assessment of aesthetic services in a complex mountain region:combining visual landscape properties with crowdsourced geographic information[J].Landscape ecology,32(5):1097-1115. [147] TIAN G,LU L,MCINTOSH C,2021.What factors affect consumers' dining sentiments and their ratings:evidence from restaurant online review data[J/OL].Food quality and preference,88:104060.https://doi.org/10.1016/j.foodqual.2020.104060. [148] TONY H,STEWART T,KRISTIN T,2009.The fourth paradigm:data-intensive scientific discovery[M].Washington:Microsoft Research. [149] TORRES E N,SINGH D,ROBERTSON-RING A,2015.Consumer reviews and the creation of booking transaction value:lessons from the hotel industry[J].International journal of hospitality management,50:77-83. [150] TSENG C,WU B,MORRISON A M,et al.,2015.Travel blogs on China as a destination image formation agent:a qualitative analysis using Leximancer[J].Tourism management,46:347-358. [151] WANG M,HE Y,MENG H,et al.,2022a.Assessing street space quality using street view imagery and function-driven method:the case of Xiamen,China[J].ISPRS International journal of geo-information,11(5):282. [152] WANG R,LUO J,HUANG S,2020.Developing an artificial intelligence framework for online destination image photos identification[J/OL].Journal of destination marketing & management,18:100512.https://doi.org/10.1016/j.jdmm.2020.100512. [153] WANG Y,YANG Y,WANG X,et al.,2024.How do voice characteristics affect tourism interpretation purchases?An empirical study based on voice mining[J].Journal of travel research,63(2):481-495. [154] WANG Z,SUN Z,YIN H,et al.,2022b.Data-driven materials innovation and applications[J/OL].Advanced materials,34(36):2104113.https://doi.org/10.1002/adma.202104113. [155] WEI S,SONG S,2022.Sentiment classification of tourism reviews based on visual and textual multifeature fusion[J/OL].Wireless communications and mobile computing:9940817.https://doi.org/10.1155/2022/9940817. [156] WOŹNIAK E,KULCZYK S,DEREK M,2018.From intrinsic to service potential:an approach to assess tourism landscape potential[J].Landscape and urban planning,170:209-220. [157] XIA J C,ZEEPHONGSEKUL P,PACKER D,2010.Spatial and temporal modelling of tourist movements using Semi-Markov processes[J].Tourism management,32(4):844-851. [158] XIAO X,FANG C,LIN H,2020.Characterizing tourism destination image using photos' visual content[J].ISPRS international journal of geo-information,9(12):730. [159] XING N,2022.Selection and exploration of cultural and creative tourist attractions based on BP network[J/OL].Computational intelligence and neuroscience:4386357.https://doi.org/10.1155/2022/4386357. [160] XUE L,LEUNG X Y,MA S,2022.What makes a good "guest":evidence from Airbnb hosts' reviews[J/OL].Annals of tourism research,95:103426.https://doi.org/10.1016/j.annals.2022.103426. [161] YANG X,BAI F,2021.Three-dimensional structure analysis of urban landscape based on big data technology and digital technology[J/OL].Scientific programming:7970870.https://doi.org/10.1155/2021/7970870. [162] YANG X,CHEN L,2022b.Development of Hainan Cruise Tourism Industry Based on Big Data Tourism Demand Forecast[C]//SUN S,HONG T,YU P,et al.Signal and Information Processing,Networking and Computers(ICSINC 2021).Springer,Singapore:954-961. [163] YANG X,PAN B,EVANS J A,et al.,2015.Forecasting Chinese tourist volume with search engine data[J].Tourism management,46:386-397. [164] YANG Y,ZHANG X,FU Y,2022a.Foreign tourists' experiences under air pollution:evidence from big data[J/OL].Tourism management,88:104423.https://doi.org/10.1016/j.tourman.2021.104423. [165] YUAN Z,JIA G,2022.Systematic investigation of keywords selection and processing strategy on search engine forecasting:a case of tourist volume in Beijing[J].Information technology & tourism,24(4):547-580. [166] ZHANG G,CHENG M,ZHANG J,2022.A cross-cultural comparison of peer-to-peer accommodation experience:a mixed text mining approach[J/OL].International journal of hospitality management,106:103296.https://doi.org/10.1016/j.ijhm.2022.103296. [167] ZHANG H Q,LI Z,2019.Intelligent travelling visitor estimation model with big data mining[J].Enterprise information systems,15(1):1-14. [168] ZHANG S,ZHOU W,2018.Recreational visits to urban parks and factors affecting park visits:evidence from geotagged social media data[J].Landscape and urban planning,180:27-35. [169] ZHANG Y,HE J,2021.Understanding the visual image of Kailash Sacred Landscape through geo-tagged landscape photos mapping[J/OL].Environmental challenges,5:100360.https://doi.org/10.1016/j.envc.2021.100360. [170] ZHAO H,PUIG X,ZHOU B,et al.,2017.Open Vocabulary Scene Parsing[C]//2017 IEEE International Conference on Computer Vision(ICCV).Venice:2002-2010. [171] ZHENG X,AMEMIYA M,2023.Method for applying crowdsourced street-level imagery data to evaluate street-level greenness[J].ISPRS international journal of geo-information,12(3):108. [172] ZHOU X,TIAN J,PENG J,et al.,2021.A smart tourism recommendation algorithm based on cellular geospatial clustering and multivariate weighted collaborative filtering[J].ISPRS international journal of geo-information,10(9):628. [173] ZHU L,LIN Y,CHENG M,2020.Sentiment and guest satisfaction with peer-to-peer accommodation: when are online ratings more trustworthy?[J/OL].International journal of hospitality management,86:102369.https://doi.org/10.1016/j.ijhm.2019.102369. [174] ZHU S,BAI Z,GAN Z, et al.,2022.Simulation of the spatial pattern of scenic spots combining optimal scale and deep learning[J/OL].Frontiers in earth science,10:887043.https://doi.org/10.3389/feart.2022.887043. |
[1] | 李春晓, 张宸玮, 李辉, 刘红旭. 旅游视频的治愈功效——基于多维情绪测度的对比研究[J]. 旅游科学, 2025, 39(1): 24-48. |
[2] | 刘建平, 单爽, 王金伟, 刘粤胜. 数字经济赋能红色旅游高质量发展的理论逻辑与实践路径[J]. 旅游科学, 2025, 39(1): 69-85. |
[3] | 林云晓, 蒋依依, 谢婷, 方琰. 奥运遗产旅游情境下集体记忆对游客国家认同的影响研究——基于集体自豪的中介效应分析[J]. 旅游科学, 2025, 39(1): 86-100. |
[4] | 张茜, 许春晓, 温卫宁. 红色旅游促进青少年红色文化认同形成机制研究——基于学段差异的组态路径分析[J]. 旅游科学, 2025, 39(1): 101-118. |
[5] | 赵娜, 王辉, 论宇超, 李盼. 旅游型海岛生态系统服务供需与岛民福祉研究——以长山群岛为例[J]. 旅游科学, 2025, 39(1): 135-159. |
[6] | 陈乔, 毛焱. 旅游对贸易的溢出效应及门槛特征——来自中国-东盟的实证检验[J]. 旅游科学, 2025, 39(1): 160-174. |
[7] | 丁娟, 赵红艳, 杨慧. 家庭旅游决策行为的影响因素与机制研究——基于CEM模型[J]. 旅游科学, 2024, 38(9): 1-19. |
[8] | 何银春, 施晓莉, 曾斌丹, 王金伟. 旅游情境下传统节庆的集体记忆与地方认同建构——基于“原真性”视角[J]. 旅游科学, 2024, 38(9): 20-36. |
[9] | 吴昕阳, 梁学成, 张新成, 高楠, 宋晓. 游客沉浸感:概念化、量表开发与检验[J]. 旅游科学, 2024, 38(9): 59-77. |
[10] | 杨懿, 张婧怡. 收入结构对农村家庭旅游消费的影响:一项实证研究[J]. 旅游科学, 2024, 38(9): 78-97. |
[11] | 孙佼佼, 曹晓. 乡村目的地数字形象维度建构与量表开发[J]. 旅游科学, 2024, 38(9): 98-111. |
[12] | 余升国, 杨鹏辉. 离岛免税政策是否促进了旅游业发展?——基于政策历史演进的视角[J]. 旅游科学, 2024, 38(8): 1-25. |
[13] | 田霞, 蔡银莺, 杨青. 自然保护地旅游发展机会差别对农村家庭就业及市民化能力的影响[J]. 旅游科学, 2024, 38(8): 26-45. |
[14] | 阴健, 秦宗财. 国家文化公园文旅元宇宙空间生产的三重维度研究[J]. 旅游科学, 2024, 38(8): 46-59. |
[15] | 肖璐, 李桥兴, 陈怡梦, 沈加升, 张茜, 杨勇. 基于方面情感三元组抽取的游客评论大数据细粒度情感分析[J]. 旅游科学, 2024, 38(8): 60-87. |
|
版权所有 © 2018 《旅游科学》编辑部 | 沪ICP备14045560号-1
地址:上海市桂林路100号上海师范大学12号楼211室 | 邮编:200234 | 电话:021-64322594 | Email:lykx@shnu.edu.cn
本系统由北京玛格泰克科技发有限公司设计开发